1,883 research outputs found

    Interrupting the social amplification of risk process: a case study in collective emissions reduction

    Get PDF
    One of the main approaches we have for studying the progressive divergence of understandings around a risk issue is that of social risk amplification. This article describes a case study of a particular environmental contaminant, a chemical flame retardant that could be interpreted as having produced a risk amplifying process. It describes in particular how a group of industrial organizations acted collectively to reduce emissions of this contaminant, in an apparent attempt to avert regulation and boycotts—that is, to intercept the social amplification process and avoid its secondary effects. The aim of the study was to investigate the constitutive qualities of this collective action: the qualities that defined it and made it effective in the eyes of those involved. These include institutionalisation and independence, the ability to confer individual as well as collective benefit, the capacity to attract (rather than avoid) criticism, and the ‘branding’ that helps communicate what otherwise appear to be a set of unconnected, local actions. Although the risk amplification framework has been criticised for implying that there is some externally given risk level that is subsequently amplified, it does appear to capture the mentality of actors involved in issues of this kind. They talk and act as though they believe they are participants in a risk amplification process

    Key dating features for timber-framed dwellings in Surrey

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ The Vernacular Architecture Group 2013. MORE OpenChoice articles are open access and distributed under the terms of the Creative Commons Attribution License 3.0.The main component of the Surrey Dendrochronology Project is the accurate dating of 177 ‘dwellings’, nearly all by tree-ring analysis. The dates are used to establish date ranges for 52 ‘key features’, which cover many aspects of timber-framing from building type to details of carpentry. It is shown that changes of method and fashion were in many cases surprisingly rapid, almost abrupt in historical terms. Previous dating criteria for timber-framed dwellings in the county have been refined and new criteria introduced. Clusters of change from the 1440s and the 1540s are shown and some possible historical links suggested.The Heritage Lottery Fund, the Domestic Buildings Research Group (Surrey), the Surrey Archaeological Society and the historical societies of Charlwood, Farnham and Nutfield

    Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies

    Full text link
    Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation. General Relativity and Gravitation in press (2010) 0

    A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2

    Full text link
    We have performed a search for halo white dwarfs as high proper motion objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify 24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper motion objects are identified as strong white dwarf candidates on the basis of their position in a reduced proper motion diagram. We create a model of the Milky Way thin disk, thick disk and stellar halo and find that this sample of white dwarfs is clearly an excess above the < 2 detections expected from these known stellar populations. The origin of the excess signal is less clear. Possibly, the excess cannot be explained without invoking a fourth galactic component: a white dwarf dark halo. We present a statistical separation of our sample into the four components and estimate the corresponding local white dwarf densities using only the directly observable variables, V, V-I, and mu. For all Galactic models explored, our sample separates into about 3 disk white dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin and thick disk and the stellar and dark halo, and the subsequent calculation of the local densities are sensitive to the input parameters of our model for each Galactic component. Using the lowest mean mass model for the dark halo we find a 7% white dwarf halo and six times the canonical value for the thin disk white dwarf density (at marginal statistical significance), but possible systematic errors due to uncertainty in the model parameters likely dominate these statistical error bars. The white dwarf halo can be reduced to around 1.5% of the halo dark matter by changing the initial mass function slightly. The local thin disk white dwarf density in our solution can be made consistent with the canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion expande

    Curvature energy effects on strange quark matter nucleation at finite density

    Full text link
    We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.Comment: PlainTex, 6 pp., IAG-USP Rep.5

    The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo

    Get PDF
    The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Massivewhite dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of typical carbon-oxygen white dwarfs and they fade to invisibility in short timescales. Consequently, they constitute a good candidate for explaining the microlensing results. Here, we examine in detail this hypothesis by using the most recent and up-to-date cooling tracks for massive white dwarfs and a Monte Carlo simulator which takes into account the most relevant Galactic inputs. We find that oxygen-neon white dwarfs cannot account for a substantial fraction of the microlensing depth towards the LMC, independently of the adopted initial mass function, although some microlensing events could be due to oxygen--neon white dwarfs. The white dwarf population contributes at most a 5% to the mass of the Galactic halo.Comment: 10 pages, 4 figures. Accepted for publication in Astronomy & Astrophysic

    Robust, data-driven inference in non-linear cosmostatistics

    Full text link
    We discuss two projects in non-linear cosmostatistics applicable to very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy redshifts and their number density distribution from approximate, photometric redshift data. The second focuses on cosmic voids and uses them to construct cosmic spheres that allow reconstructing the expansion history of the Universe using the Alcock-Paczynski test. In both cases we find that non-linearities enable the methods or enhance the results: non-linear gravitational evolution creates voids and our photo-z reconstruction works best in the highest density (and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern Astronomy V," held at Penn Stat

    Symmetry structure and phase transitions

    Get PDF
    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.Comment: Plenary talk given at the 4th. ICPAQGP held at Jaipur, India from Nov 26-30, 2001.laTex 2e file with 8 ps figures and 12 page

    Possible Cosmological Implications of the Quark-Hadron Phase Transition

    Get PDF
    We study the quark-hadron phase transition within an effective model of QCD, and find that in a reasonable range of the main parameters of the model, bodies with quark content between 10210^{-2} and 10 solar masses can have been formed in the early universe. In addition, we show that a significant amount of entropy is released during the transition. This may imply the existence of a higher baryon number density than what is usually expected at temperatures above the QCD scale. The cosmological QCD transition may then provide a natural way for decreasing the high baryon asymmetry created by an Affleck-Dine like mechanism down to the value required by primordial nucleosynthesis.Comment: 19 pages, LaTeX, 5 Postscript figures included. Submitted to Journal of Physics

    Can a galaxy redshift survey measure dark energy clustering?

    Get PDF
    (abridged) A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries an invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z~1 and z~3 surveys with areas of 2000 and 300 square degrees, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c_e in the context of an adiabatic cold dark matter dominated model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with Planck, can distinguish dark energy clustering from a smooth dark energy model such as the quintessence model (c_e=1), when c_e<0.04 (0.02) in the case of the constant equation of state w_0=-0.9 (-0.95). An ultimate full-sky survey of z~1 galaxies allows the detection when c_e<0.08 (0.04) for w_0=0.9 (-0.95). We also investigate a degeneracy between the dark energy clustering and the non-relativistic neutrinos implied from the neutrino oscillation experiments, because the two effects both induce a scale-dependent modification in the galaxy power spectrum shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift coverage can efficiently separate the two effects by utilizing the different redshift dependences, where dark energy clustering is apparent only at low redshifts z<1.Comment: 14 pages, 7 figures; minor changes to match the published versio
    corecore